Characterising the CI and CI-like carbonaceous chondrites using thermogravimetric analysis and infrared spectroscopy
نویسندگان
چکیده
The CI and CI-like chondrites provide a record of aqueous alteration in the early solar system. However, the CI-like chondrites differ in having also experienced a late stage period of thermal metamorphism. In order to constrain the nature and extent of the aqueous and thermal alteration, we have investigated the bulk mineralogy and abundance of H2O in the CI and CI-like chondrites using thermogravimetric analysis and infrared spectroscopy. The CI chondrites Ivuna and Orgueil show significant mass loss (28.5–31.8 wt.%) upon heating to 1000 °C due to dehydration and dehydroxylation of abundant phyllosilicates and Fe-(oxy)hydroxides and the decomposition of Fe-sulphides, carbonates and organics. Infrared spectra for Ivuna and Orgueil have a prominent 3-μm feature due to bound −OH/H2O in phyllosilicates and Fe-(oxy)hydroxides and only a minor 11-μm feature from anhydrous silicates. These characteristics are consistent with previous studies indicating that the CI chondrites underwent near-complete aqueous alteration. Similarities in the total abundance of H2O and 3 μm/11 μm ratio suggest that there is no difference in the relative degree of hydration experienced by Ivuna and Orgueil. In contrast, the CI-like chondrites Y-82162 and Y-980115 show lower mass loss (13.8–18.8 wt.%) and contain >50 % less H2O than the CI chondrites. The 3-μm feature is almost absent from spectra of Y-82162 and Y-980115 but the 11-μm feature is intense. The CI-like chondrites experienced thermal metamorphism at temperatures >500 °C that initially caused dehydration and dehydroxylation of phyllosilicates before partial recrystallization back into anhydrous silicates. The surfaces of many C-type asteroids were probably heated through impact metamorphism and/or solar radiation, so thermally altered carbonaceous chondrites are likely good analogues for samples that will be returned by the Hayabusa-2 and OSIRIS-REx missions.
منابع مشابه
Petrographic, chemical and spectroscopic evidence for thermal metamorphism in carbonaceous chondrites I: CI and CM chondrites
We present a comprehensive description of petrologic, chemical and spectroscopic features of thermally metamorphosed CI-like and CM (and CM-like) chondrites. Only two such CI chondrites have so far been discovered i.e. Y-86029 and Y82162. Thermal metamorphism in these chondrites is apparent in their low contents of H2O, C and the most thermally labile trace elements, partial dehydration of matr...
متن کاملFractionation of Platinum Group Elements in Carboneceous Chondrites
Introduction: Although chondrites are among the most primitive materials accessible to us, their chemical compositions are highly variable among groups of chondrites, reflecting several fractionation processes including condensation and accretion processes in the early solar system. Considering that CI chondrites represent a solar system standard in the elemental abundance [1] and that calcium ...
متن کاملVolatile fractionation in the early solar system and chondrule/matrix complementarity.
Bulk chondritic meteorites and terrestrial planets show a monotonic depletion in moderately volatile and volatile elements relative to the Sun's photosphere and CI carbonaceous chondrites. Although volatile depletion was the most fundamental chemical process affecting the inner solar nebula, debate continues as to its cause. Carbonaceous chondrites are the most primitive rocks available to us, ...
متن کاملThermally Metamorphosed Antarctic CM and CI Carbonaceous Chondrites in Japanese Collections, and Transformation Processes ofPhyllosilicates
متن کامل
Organic Constituents in Carbonaceous Chondrites; Evidence for Preservation of Pristine Particles of Mixed Origins
Introduction: Carbonaceous chondrites are primitive meteorites that have sampled the oldest conden-sates of the solar system. They have accreted components of various origins: CAIs (also known as refrac-tory inclusions), chondrules, ice, noble gases and or-ganics. Radioactive decay of short lived radionucleides quickly heated these parent bodies and drove thermal metamorphism and aqueous altera...
متن کامل